Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(maxlist, y)
APP2(height, app2(app2(node, x), xs)) -> APP2(maxlist, 0)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
APP2(app2(le, app2(s, x)), app2(s, y)) -> APP2(app2(le, x), y)
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(maxlist, y), ys)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(map, f), xs)
APP2(app2(le, app2(s, x)), app2(s, y)) -> APP2(le, x)
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(le, x)
APP2(height, app2(app2(node, x), xs)) -> APP2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(if, app2(app2(le, x), y))
APP2(height, app2(app2(node, x), xs)) -> APP2(app2(map, height), xs)
APP2(height, app2(app2(node, x), xs)) -> APP2(map, height)
APP2(height, app2(app2(node, x), xs)) -> APP2(app2(maxlist, 0), app2(app2(map, height), xs))
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(f, x)
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(le, x), y)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(cons, app2(f, x))

The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(maxlist, y)
APP2(height, app2(app2(node, x), xs)) -> APP2(maxlist, 0)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
APP2(app2(le, app2(s, x)), app2(s, y)) -> APP2(app2(le, x), y)
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(maxlist, y), ys)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(map, f), xs)
APP2(app2(le, app2(s, x)), app2(s, y)) -> APP2(le, x)
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(le, x)
APP2(height, app2(app2(node, x), xs)) -> APP2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(if, app2(app2(le, x), y))
APP2(height, app2(app2(node, x), xs)) -> APP2(app2(map, height), xs)
APP2(height, app2(app2(node, x), xs)) -> APP2(map, height)
APP2(height, app2(app2(node, x), xs)) -> APP2(app2(maxlist, 0), app2(app2(map, height), xs))
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(f, x)
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(le, x), y)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(cons, app2(f, x))

The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 12 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(le, app2(s, x)), app2(s, y)) -> APP2(app2(le, x), y)

The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(le, app2(s, x)), app2(s, y)) -> APP2(app2(le, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 3}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( s ) = 3



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(maxlist, y), ys)

The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(maxlist, x), app2(app2(cons, y), ys)) -> APP2(app2(maxlist, y), ys)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 3}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( cons ) = 2



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP2(height, app2(app2(node, x), xs)) -> APP2(app2(map, height), xs)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(map, f), xs)

The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(height, app2(app2(node, x), xs)) -> APP2(app2(map, height), xs)
The remaining pairs can at least be oriented weakly.

APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(map, f), xs)
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 3}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( node ) = 2


POL( cons ) = 1



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(map, f), xs)

The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(f, x)
APP2(app2(map, f), app2(app2(cons, x), xs)) -> APP2(app2(map, f), xs)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( APP2(x1, x2) ) = max{0, x2 - 3}


POL( app2(x1, x2) ) = x1 + x2 + 1


POL( cons ) = 2



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(app2(map, f), nil) -> nil
app2(app2(map, f), app2(app2(cons, x), xs)) -> app2(app2(cons, app2(f, x)), app2(app2(map, f), xs))
app2(app2(le, 0), y) -> true
app2(app2(le, app2(s, x)), 0) -> false
app2(app2(le, app2(s, x)), app2(s, y)) -> app2(app2(le, x), y)
app2(app2(maxlist, x), app2(app2(cons, y), ys)) -> app2(app2(if, app2(app2(le, x), y)), app2(app2(maxlist, y), ys))
app2(app2(maxlist, x), nil) -> x
app2(height, app2(app2(node, x), xs)) -> app2(s, app2(app2(maxlist, 0), app2(app2(map, height), xs)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.